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Abstract

ENERGY POTENTIAL ANALYSIS OF

ZERO VELOCITY CURVES

IN THE RESTRICTED

THREE-BODY

PROBLEM

by

Christopher Mark Thomas Tuason, B.S.E.E.

Supervising Professor: Dr. Hans M. Mark

The restricted problem of three bodies is a more tractable case than the

general three-body problem. Two primary celestial bodies are restricted to a

circular orbit while a third body of negligible mass orbits in the plane of motion

established by the primaries. Among many other practical applications, these

restrictions form a rough approximation to the Earth-Moon-spacecraft problem.

This study analyzes the restricted problem by superposition of the energy

potential wells that arise from the gravitational and inertial forces of the primaries

in their circular motion. Three-dimensional computer graphics are used to

illustrate the surfaces that are created by the potentials of the primaries. Zero

vi



velocity curves, also known as Hill's curves, describe the boundary between

regions of possible motion and forbidden regions for the third body. These curves

are the principle qualitative aspect of the restricted problem. A curve of zero

velocity is found by taking a cross-section of the potential surface at a specific

energy level corresponding to the Jacobian constant of the third body. The

topology of a zero velocity curve may change depending on the energy of the

third body. The Lagrange equilibrium points are clearly shown to be located at

the critical energy levels where the topology of the zero velocity curves change.

The superposition analysis in a three-dimensional representation clearly reveals

the component forces involved in the restricted problem and provide a visual

model for understanding the stability of motion near the equilibrium points.
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Chapter 1

Introduction

Sir Isaac Newton published Philosophiae Naturalis Principia

Mathematica in 1687. Investigating the motion of the Earth, Moon and Sun, he

found the problem of three bodies to be extremely challenging. The solutions to

the orbits of two bodies were expressed by the simple equations of conic sections.

No such solution was found for the three-body problem. He complained that the

problem gave him headaches and kept him awake.

The restricted problem of three bodies dates back to Euler, who proposed

the use of a rotating coordinate system in 1772, to simplify his second lunar

theory. In that year, Lagrange found particular solutions to the restricted problem,

showing the existence of equilibrium points.

Laplace attempted to prove the stability ot the solar system in i773, by

using a perturbation technique that solved for the first-order deviation from a two-

body orbit. Poisson continued with a series expansion to solve for higher order

terms. Then in 1899, J. Henri Poincar6 proved that such series solutions are not

convergent in general. Concentrating on the three-body problem, he established

the concept of non-integrable dynamical systems.

Because of the absence of analytical solutions, qualitative methods are

indispensable to the study of the non-integrable restricted three-body problem. In

1836, Jacobi presented an integral to the equations of motion for the restricted

problem that gives a constant to associate the speed of the third body with its
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position. Hill, in 1878, applied the Jacobian constant to define regions of possible

motion and regions where motion is prohibited, separated by curves of zero

velocity. These curves are the principle qualitative aspect of the restricted

problem.

Zero velocity curves are given a thorough analysis in the available

literature, some of which is listed in the references. The purpose of this paper is

to use three-dimensional graphics to help give a comprehensive explanation for

the sinificance of zero velocity curves. The energy potential analysis is intended

to give a conceptual understanding of the restricted three-body problem.

The problem is defined and equat; ns of motion are derived in chapter 2.

Zero velocity curves are introduced as a qualitative method of gaining information

about the motion without actually solving the differential equations. Chapter 3

reviews the relationship between a force function and a potential function in

preparation for the superposition analysis of the zero velocity potential surface in

chapter 4. The Lagrange equilibrium points are shown to be special points of zero

gradient for the surface in chapter 5. Zero velocity curves are shown to be

obtained from the intersection of the potential at the energy level specified by the

Jacobian constant. Finally, the significance of this research is emphasized with

applications to future plans for space exploration.



Chapter 2

Formulation of the Restricted Problem

2.1 The Intractable Nature of the Three-Body Problem

For anyone who has learned the elegant geometry of the solutions to the

two-body problem, it is not at all obvious that the introduction of a third body will

cause such complications. As disclosed by Poincar6 in MWthodes Nouvelles of

1899, dynamical systems of more than two bodies are non-integrable. Although a

particular solution may be found under special conditions, no generally valid

analytical solutions exist for the three-body problem. To understand the need for

the restricted formulation, a brief discussion of the general problem follows.

z

F12  m2

x

Figure 2.1 The general problem of three bodies is an eighteenth-order
dynamical system consisting of three second-order differential
equations in three dimensions.

3
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The general problem of three bodies states that three masses are mutually

attracted according to the law of Newtonian gravitation. This forms the dynamic

system depicted in figure 3.1. The three second-order differential equations in

three dimensions form an eighteenth-order dynamical system:

•1 . G .m Gmr+ , rMrnr = - , -/r12 + " -- r 1,,

mt', = - - r + - r12, (2.1)1 ..' 223- r12-2

Gm3rn1  + Gnyn n
-n r3

2  2r3" r2,-

where G denotes the universal gravitational constant. The masses of the three

bodies are ini, m2, and in3, their position vectors are F1(x,y,z), F,(x,y,z), and

F3(x,y,z) and the dots denote time derivatives. Two vectors connect each mass

along the line of gravitational force and are given by:

F12 = F1 - F2, F'.' = T, - " F,= - T,, (2.2)

with magnitudes r, and unit vectors r,,.

A far cry from the lucidity of conic sections, a third body creates tangled

trajectories in three-dimensions governed by these daunting equations of motion.

Through the use of integrals from conservation of linear and angular momentum,

conservation of energy, and the removal of time dependence, the eighteenth-order
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system can be reduced to a sixth-order system. Because there are no external

forces, the center of mass of the system travels on a straight line with constant

velocity. These two vector equations give six constants thereby reducing the

eighteenth-order system to twelve. Conservation of angular momentum gives one

vector equation with three constants of integration, further reducing the system to

ninth-order. Conservation of energy is a scalar relationship that brings the order

down to eight.

Further reduction requires sacrifice of important information. With much

effort, it is possible to eliminate time from the equations, leaving a sixth-order

system to describe only the geometry of the motion. After these great strides, the

remaining sixth-order differential equation is still unwieldy [ 151.

2.2 Justification for the Restricted Problem

Upon reaching this analytical dead end in the general problem, any

simplifying assumptions are enthusiastically considered. Judging which

assumptions are acceptable can be a difficult task. Fortunately, nature itself

provides the simplifications. Despite the many-body situation of the real world,

predictable two-body orbits dominate much of the observed motion of the

universe. It is most likely due to the instabilities of three (or more) bodies that

well-ordered systems evolve. Research indicates that whenever three bodies of

like magnitude interact, one of the bodies will eventually get ejected while the

other two form a stable binary [171.
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Stable two-body motion takes place on many levels of scale. A spacecraft

orbits around the Moon. The Moon orbits around the Earth. The Earth orbits

around the Sun. The Sun orbits around the core of the Milky Way. The galactic

core, probably a black hole, may be in orbit around some center of the universe.

At every level of this self-similar structure reminiscent of fractal geometry, the

mass-distance ratios are established so that motion is directed by, at most, two

dominating gravitational sources of similar magnitude.

Although numerous masses are found in our solar system, it is an easy task

to identify two masses whose interaction can be approximated by two-body

motion, while the presence of other masses merely serve to perturb the orbit.

These systems are often found to have elliptical orbits of low eccentricity. When

the masses of the strongly interacting members are much greater than a third body

being considered, the situation is ripe for simplifying assumptions to make the

three-body problem more tractable.

It has long been known that the Earth-Moon system forms such a binary of

near circular motion. The history of the restricted three-body problem is over 2(00

years old, being formulated by Euler in his second lunar theory. In his Theoria

Motuum Lunae, published in 1772, he suggests using a reference frame that

rotates with the system so that the positions of the Earth and Moon are fixed.

2.3 Definition of the Restricted Problem

The restricted three-body problem is set up as a degenerate case of the

general problem. Generally, the motion of each body is influenced by the
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gravitational attraction from each of the other masses. In the situation where a

third body is of a much smaller mass than the other two, the third body has a very

small effect on the motion of the larger masses. The two larger masses, referred

to as the primaries, act as a pair that has their motion approximated by a two-body

problem with their trajectories predetermined. The motion of the third body, as

affected by the two primaries, is the subject of the restricted three-body problem.

As in the general problem, the mass distributions of all bodies are such that they

may be treated as point masses. In considering only the motion of the third body,

only the last of equations (2.1) is necessary. Being left with a single second-order

differential equation in three dimensions, the eighteenth-order system is restricted

to six.

It is possible to evaluate different geometries for the primaries. For

example, much analytical and numerical work has been done on the elliptical

three body problem [151. This study will deal with the most basic formulation in

which the primaries are in a circular orbit and the initial conditions of the third

body are such that its motion will remain in the same plane of motion with the

primaries. These conditions are explicitly termed the coplanar circular restricted

three-body problem.

As opposed to the three-dimensional restricted problem, the coplanar

constraint produces equations of motion that are fourth-order. A disadvantage of

the restricted formulation is that ten of the integrals that were used to reduce the

general problem are no longer available. For instance, conservation of energy was

discarded by neglecting the small effect that the third body had on the motion of

the primaries. The only known integral for the restricted problem was discovered



by Jacobi in 1836, and gives a constant that also bears his name. The Jacobian

constant connects the speed of the third body to its position through the potential

function.

2.4 Equations of Motion

The notation that is used follows Szebehely, 1967 [151. The equations of

motion are greatly simplified by a clever choice of coordinate axes. With the

primaries in circular orbit, their barycenter is chosen for the origin and the 5ý axis

coincident with their line of syzygies so that the masses mn1 and 112 remain fixed

in the rotating reference frame. Mass in, is chosen as the larger of the two and is

fixed at (b,O). The smaller mass in.1 is fixed at (-a,O). The barycentric relation is

such that mnb = mn2a, where a Ž_ b because in1 Ž_ 112. The circular orbit requires

that gravitational force is balanced by centrifugal force so that:

GmnM2 - mbn 2  2

(a + b)2  ' = in, a (2.3)

The symbol G is the gravitational constant and the mean motion n is their average

angular velocity. The rotating frame is displaced from the inertial frame by an

angle nt*, which is the longitude of in,. The symbol t* represents time. Notice

that clean variable names are being reserved for the non-dimensional

representation.

By defining I as the total distance between the primaries, Kepler's third

law is derived from Newton's force law shown in equation (2.3) above:



9

Gin1 = al-n2 , Gin, = b12n 2

G(mn1 + in,) 13un2. (2.4)

The equations of motion in the inertial frame of reference are:

d2X Gin Gin,
=-- X - bcosnt*) - - (X + acosnt*),dt*2 R3R,3

(2.5)
dY_ Gin Gin,d2Y - n (Y-bsinnt*)- x 3(Y + a sin nt*),

Y

nifl

F2 ,b Rt3R

'Oe' t

in2 "4P a

Figure 2.2 The restricted three-body problem showing the relationship
between f1xed and rotating coordinate systems.
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and may be compared to equation (2.1) of the general problem. The distances RI

and R2 are:

R. = V(X-bcosnt*)2 +(Y-bsinnt*) 2 ,

(2.6)

R, = 1(X + acosnt*)2 + (Y+ asinnt*)2 .

2.5 Equations of Motion in the Rotating Frame

With the aim of simplifying the equations of motion, the coordinates are

transformed to the rotating system. Complex variables are a convenient method

to carry out this operation. Let the inertial frame be described by the complex

variable Z = X + iY, and the rotating frame by the complex variable z = 2 + iV.

Where X, Y, T and J7 are all real scalars. Then the coordinate transformation by

a rotation through angle nt* is given by

Z = ze (2.7)

The first derivative of Z with respect to time is

dIZ in.,, +idz

dt- = -nze +' (2.8)

and the second derivative is

dt 2  =((in)2 ze"* + ine"* e,+ e, dz 2Z (,

d , *2 * ) , It *2 i t *)

(2.9)

dt-*2 +2in - - n'z e
dt
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Applying this result to equations (2.5), the complex form for the equations of

motion is

Zd+2 in tdzI Gin1(z-b) Gmi(z+a) (210)
dt * 2  dt* 3 3

which, when separated into the real and imaginary components, gives

d2- 23F Gin, 5_ Gm(- b) Gin,(.Z + a)
i __ 2n dt * r= 3 23
dt *2 dt *

d 2S v Lx- Giny Giny
dt*2 (iti: *1

where:

FT= (- b)2 + , F2= ( +a) 2 + 2 . (2.12)

2.4 Equations of Motion in Dimensionless Coordinates

Y

11-3

r2 42/--týr! x

in2  
t loo-

(F-I ,o)

Figure 2.3 Restricted three-body problem in non-dimensional coordinates
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The physical parameters that appear in equation (2.11) are related by the

following equations and can be replaced by a single parameter through the

conversion to dimensionless coordinates:

l' V -l r= r.,

mib =ma, a + b = l, t nt (2.13)

n b II1  a/92 = -- = - ,=t- --
m1 + m2  inm + n, 1

Substitution into equations (2.11) gives the results:

L - 2ý - x J

(2.14)

Y,'+ 2U y = +y + yl
L r1  r3j

where an identity form of Kepler's third law has also been used to eliminate G.

These equations may be written in a compact form by moving the x and y

terms to the right hand side and defining the potential function .2:

x- 2"Y :f = --x [II X92 r + JU_(x +P J)],

(2.15)

j+2 =-= -- Y-Y +- Y -- ].
Y L r3 r3J
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The potential function £2 will be comprehensively derived in chapter 4, but for

continuity, it is given to be

I : ( X2 + Y.,)+ /L• + L2 (2.16)
(2162 •" " r1 rT

with distances

r (=x-wl)-+v 2 .

(2.17)

r. (_, + I Y+ Y2

Notice that equations (2.15), (2.16) and (2.17) can be expressed as a function of

the single parameter

/ -/ 2  . . .. = !-pz1 . (2.18)14 ,2 1 + "I, mi, + in,

A constant may be added to the potential function .2 without changing

the equations of motion given by equations (2.15). It is sometimes desired to

define the potential in a more symmetric form, where

-- 1f2 = 1 +(2.19)

2

giving
Ir = ./lr +,U2r22)+ + L2 . (2.20)

r2 r,
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Mhe equations of motion are

d92
",i - 2Y = -x

(2.21)
A2

y+ 2x =-W

Jacobi's integral connects the relative speed of the third body to its location as

limited by the potential i'unction through the equation

V2 = 20 - C, (2.22)

or
i2 = X2 V2 2(l--p) +2 C, (2.23)="x-2 +. + +-C.(223

where V is the magnitude of the velocity vector and C is the Jacobian constant.

The most definitive qualitative statement that can be made with the

Jacobian integral is to define regions of possible motion and regions from which

the third body is forbidden. The boundary between such regions occurs when the

velocity of the third body goes to zero. Setting .i and i" to zero, equation (2.23)

becomes
x 2 2(l-p) 2+ (2.24)

where the Jacobian constant is determined from initial conditions.
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This function of position defines a curve of zero velocity for any particular

value of the Jacobian constant. Figure 2.4 is a plot of various values of C for the

mass parameter M=0.3.

36 39

Figure 2.4 Curves of zero velocity for:" -).3. (reproduced
from Szebehely, 1967).

The origin of the potential function and the meaning of zero velocity

curves with their equilibrium points are to be explained thoroughly in chapter 5.



Chapter 3

Energy Potentials

3.1 The Potential Function

A vector function can be related by a one-to-one mapping to a scalar

function. Such is the connection between a force function to a potential function.

The scalar potential function U is generated by integrating the force field F along

the path dT:

-f F. d7 = U, (3.1)

with the negative sign imposed as a matter of convention. To determine the force

at any particular point on the generated potential function, the inverse relationship

;- gdU dUi dU
S(3.2)

dx dy d Z

is applied, stating that force equals minus thý, dicit of the potential. Not all

force fields have a realizable potential funci. :,v ,,iated with them. If the

vector field has any rotation where curl F e. the value of the integral in

equation (3.1) would be dependent upon the path that is taken. To insure path

independence, the condition:

d2F (3.3)

dxd ddr

16
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must hold, thereby ensuring the existence of a potential function. This criterion

may also be expressed as the line integral along a simple closed curve in the

vector field being equal to zero:

fP. d = 0, (3.4)

for any arbitrary closed path in the vector field F. Forces that meet this criteria

are said to be conservative.

The potential function U may be defined with the addition of an arbitrary

constant of integration. The zero energy reference may be chosen at any level by

selection of this constant.

3.2 An Example of Gravitational Force

The potential associated with the gravitational force field is obtained by

integrating Newton's force law as per equation (3.1) and meets the conservative

force criteria of equation (3.3):

, -Gmm2 r = -r -GinIm2 r"d-
Pray r2 rra Iý 1'

=Gni, m2 dr (3.5)

Gini ? + C,
I'
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where G is the universal gravitation constant, P is the unit vector that points from

mass m, to mass rn1 , r is the distance between the masses, and C is a constant of

integration that is chosen to be zero.

A convenient conceptual model of the resultant potential surface is to

think of free space in two dimensions as a stretched sheet of flat rubber. A mass

placed on this sheet deforms the rubber and forms a well of potential energy that

must be climbed out of in order to move away from the mass. The zero energy

reference is chosen to be at the level of the unstretched sheet prior to the

introduction of the mass. Once the warping of the sheet is accomplished, zero

gravitational potential energy can only be found at an infinite distance from the

mass. Figure 3.1 illustrates the mapping of a gravitational force vector field in

two dimensions to its corresponding potential surface.

x-y plane

Figure 3.1 Gravitational force field and corresponding potential function.
Note that the gradient at any point on the potential surface is the
negative force vector in the x-y plane. The z-axis of the potential
function is energy. Half of the field his been cut away for clarity.
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Notice how the maximum slope at any point on the potential surface

corresponds to the magnitude of force at that point. The direction of that gradient

is opposite the direction of the force vector. Thus, the scalar potential function

has a one-to-one correspondence with the original force function.

3.3 Kinetic Energy as the Potential of Inertial Force

The force and energy potential relationship given by equation (3.2) may be

written, for simplicity, in one dimension as:

F(x) - (3.6)
dyc

When applied to kinetic energy, this yields an intriguing analysis. After some

manipulation, it is shown that kinetic energy is the potential of inertial force:

d (1mv2 d (ld d =_ d _ I (ctd + d (cdr) .dr]
dx 2 =dx 2 t d) 2 ct dx (it & ltJ ct

(3.7)

2 mLt d dx dix2

D'Alembert (1717-1783) suggested that any dynamic system can be

described by the equations of statics by introducing inertia as a force. The final

term in equation (3.7), -ma, is the inertial force of D'Alembert's principle. The

negative sign is due to the fact that inertial force opposes the net acceleration that
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is experienced by a mass. More on D'Alembert's principle can be found in Torby

[181.

3.4 Conservation of Energy

It can be a lengthy process to derive the principle of conservation of

energy. Starting with Newton's second law, it is possible to derive the

Lagrangian. From the Lagrangian, the Hamiltonian is derived. Imbedded in the

Hamiltonian is the time-invariance of energy. It is perhaps difficult to get a good

appreciation for the reason why energy should be conserved. However, using the

energy potential concept, a direct route proves the energy conservation principle

in a manner whose simplicity is intuitively appealing.

For this derivation, Newton's third law is used with D'Alembert's principle

and the potential relation of equation (3. 1). D'Alembert's principle of inertial

force follows directly from Newton's second law. The net acceleration on a body

is produced by the sum of external forces through the relation:

I.P, = mh, (3.8)

SF Ina - 0m =0, (3.9)

X.ei + Fi,,r =0, (3.10)

where inertial force is -mui, as stated in equation (3.7).
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Newton's third law states that for every action, there is an equal and

opposite reaction. When a force is applied to a body, the acceleration is opposed

by inertial force. So the third law is expressed as the sum of all forces equaling

zero:
IF=0. (3.11)
all

Equation (3.11) looks deceptively like a statics equation and one may

wonder how any motion can exist at all. This is explained by the fact that inertial

force arising from kinetic energy does not act externally to a body. This matter

gets somewhat more complicated when dealing with accelerating frames of

reference because in those cases, inertia only acts partially as an internal force.

The internal component of inertia is always bound in the kinetic energy of the

body's motion relative to the reference frame, whether or not that frame is

accelerating. The problem of accelerating reference frames will be addressed

more closely in chapter 4.

Applying the relationship given by equation (3.1) to Newton's third law in

the form of equation (3.11) and passing the summation inside the integral, the

elegant result:

YU =-JI -.dT =-fO.-IT = Const, (3.12)
all all

where the constant arises from the integration and may be chosen arbitrarily.

Therefore, the zero energy reference may be set at any level. This shows that

when kinetic energy is treated as inertial potential, conservation of energy follows
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directly from Newton's third law and helps to explain why energy is conserved.

Energy is conserved because every force is opposed by an equal and opposite

force.

3.5 Two-Body Orbit Analysis

To understand the significance of the energy potential representation of

the restricted three-body problem, it is helpful to first transform a familiar

problem to its potential form. The two-body problem provides a simple example.

Two-body trajectories follow the geometry of the well-known conic sections.

Depending on the energy of the system, the trajectory may follow a circular,

elliptical, parabolic, or hyperbolic path. If the total energy is negative, the orbit

will be circular or elliptical and the two bodies will remain at a finite distance to

each other. For a system with exactly zero total energy, the motion will follow a

parabolic orbit with the relative velocity going to zero at infinite distance. When

the two-body system has a positive total energy, the orbit is hyperbolic and the

two masses depart at a velocity that asymptotically approaches the velocity

associated with the kinetic energy of the positive system total. This departure

velocity is termed hyperbolic excess velocity.

In the case where the mass of one body is negligible compared to the

other, such as a satellite orbiting a planet, the gravitational potential is determined

by the large mass. Figure 3.2 depicts the two-body problem in a three-

dimensional representation with the z-axis being the energy. The height above the

gravitational potential surface is the kinetic energy of the small body. Maximum
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kinetic energy occurs at the orbit periapsis and decreases with distance from the

large mass. Notice that the total height does not change throughout the orbit,

illustrating the fact that its total energy remains constant.

Figure 3.2 Kinetic energy superimposed on the gravitational potential for
circular, elliptical, parabolic, and hyperbolic orbits in the two-body
problem (Note how the negative total energy in the circular and
elliptical cases establishes a circular boundary beyond which lies a
region where motion is prohibited. No such region exists for the
parabolic or hyperbolic cases).
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The potential surface for the circular and elliptical orbits is cut off at a

negative level of energy. This establishes a boundary that defines a region where

motion is forbidden for a body of that particular energy level. The circular and

elliptical examples in figure 3.2 hL the same energy and therefore the radius of

this boundary is identical. t- ne eccentricity of the orbit increases, the apogee of

the orbit gets closer to the boundary. The boundary can only be reached in a

degenerate rectilinear orbit where the velocity goes to zero at the apogee. All

points along this boundary are associated with zero velocity because the kinetic

energy must go to zero. No such boundary exists for the case with zero or

positive total energy. A body that is traveling on a parabolic or hyperbolic

trajectory is not prohibited from any area in the plane by this qualitative

assessment.

The shape of these boundaries, when they exist, is always circular in the

two-body problem. The region outside of the circular boundary is unattainable

without increasing the kinetic energy of the mass, such as with a thrusting

maneuver for a spacecraft. Once the kinetic energy is increased, the boundary

simply moves outward so that the boundary is never violated.

This boundary that divides regions of possible motion and prohibited

regions of motion is quite similar in concept to the more complex zero velocity

curves of the restricted three-body problem. Understanding the relationship

between trajectories to the boundary in the two-body problem makes the

limitations of zero velocity curve analysis in the restricted three-body problem

much easier to appreciate. Nothing is said about the path that is taken. The

boundary merely puts a fence around the area where motion is allowed.
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The topology of three-body zero velocity curves take on a much different

character than these two-body boundaries because of the rotating reference frame.

The zero velocity potential surface is obtained by superposition of the separate

potentials arising from static and dynamic forces. Analysis of the potential

surface in the restricted three-body problem is the subject of chapter 4. It is of

interest, however, to first analyze the purely static gravitational potentials of more

than one body before introducing the dynamics of the restricted problem.

3.6 Superposition of Gravitational Potentials

The two-body examples which have been dealt with thus far have assumed

that the mass of the orbiting body is negligible. When the mass of the second

body is of significant magnitude, the resulting potential surface takes on a very

different character than the surface of a single body. Superposition of the two

gravity wells leads to a potential surface with an equilibrium saddle forming

between the two bodies. This point of equilibrium is located where the

gravitational force of the first body is exactly canceled by the second. In

analyzing the potential surface, it is apparent that any perturbation from this

equilibrium point toward either mass will result in an increasing force toward that

same mass, indicating that this point is unstable.

In considering only the force of gravity, the picture is incomplete because

dynamic inertial forces are ignored. Because the bodies rotate around each other

and are not fixed in space, there are five such equilibrium points in reality, arising

from a balance with the centrifugal force. But some interesting information can
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be obtained by analyzing the static force relationships between two bodies. Other

bodies of significant mass can be superpositioned so that the static gravitational

situation of many bodies can be represented in this straightforward technique by

superposition of potential wells.

Figure 3.3 Gravity well of the Moon superpositioned on the Earth's potential.
Note that the singularity located at the Moon's position does not
appear due to the coarseness of the grid.
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Figure 3.4 Sun's potential superpositioned on the Earth-Moon system. The
graph depicts a small section of the Sun's gravity well where the
Earth-Moon system is found so that the Sun is located far off the
left side of the graph and the energy axis (z-axi-) i•~ shfted down
(more negative) to expand detail. Notice that the Moon
experiences a pull from the Sun that is more than twice as strong as
the Earth's pull. Compare to the isolated Earth-Moon system
shown in figure 3.3.

It is customary to think that the motion of the Moon is dominated by the

gravitational attraction of the Earth. With the Earth as the center of reference, the

Moon can be seen to orbit in an ellipse of low eccentricity with minor deviating

perturbations. It is perhaps a surprising result to discover that the Moon
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experiences a pull from the Sun that is more than twice as great as the

gravitational force from the Earth. Figure 3.3 depicts the superpositioned gravity

wells of the Earth and Moon in an isolated system.

The situation is dramatically changed when the gravitational attraction of

the Sun is included. The Moon is found to be far enough away from the Earth so

that it experiences a pull from the Sun that is 2.2 times greater than the Earth's

pull. This is depicted graphically in figure 3.4. Although the Moon is considered

to orbit the Earth, it would be appropriate to think of the Moon as orbiting the Sun

and having its motion perturbed by the Earth. If it were possible to hold the Earth

and Sun fixed, the Sun would strip the Moon away. But it is the inertia of the

Earth and Moon in their respective orbits about the Sun that keeps the Moon

captive in Earth orbit. Their centrifugal force balances with the Sun's gravity so

that the system is restored to a potential like that shown in figure 3.3. The

resulting two-body motion of the Moon around the Earth is perturbed by the

small difference in acceleration from the Sun on the Moon versus the Sun on the

Earth. The transition to a rotating coordinate system and the potential due to

centrifugal force is covered in the next chapter.



Chapter 4

Derivation of the Potential Function

The potential function of the restricted problem, (2, was introduced in

chapter 2. In this chapter, the zero velocity potential surface will be found

through superposition of the component potentials in an effort to help visualize

the dynamics of the restricted problem. The shape of the gravitational potential

surface generated by the two primary masses is kept unchanged due to the fixed

distance of their uniform circular motion. This suggests the use of a rotating

coordinate system in which the gravitational force is balanced by the centrifugal

force for the orbiting primaries. Understanding the forces that arise from this

rotating frame can be a conceptually challenging aspect of die restricted problem.

4.1 Characteristics in a Rotating Reference Frame

In a non-accelerated coordinate system, there are only two types of forces

that pertain to the restricted three-body problem. These are Newtonian gravitation

and inertia. Gravitation acts externally on a body while inertia is an internal force.

Once a rotating reference frame is established, inertia manifests itself in part as

the Coriolis force and centrifugal force, both of which take on the appearance of

acting externally. The remaining component of inertial force continues to act

internally and is associated with the momentum of the body whose velocity is

relative to the rotating frame. Since the concept of inertia governs all of these

three forces, the term kinetic is used to describe the internally acting component of

29
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inertia. The practice of calling the Coriolis force fictitious is counterproductive

because the true nature of this force, like that of centrifugal force, is simply

inertia. Figure 4.1 summarizes the relationship of forces in the inertial and

rotating coordinate systems.

Non-accelerating Rotating

Gravitational Gravitational

Inertial 4 Kinetic

Coriolis

Centrifugal

Figure 4.1 Relationship of forces between an inertial and a rotating
reference frame. Note that in the non-accelerated
reference, inertia is inseparable from kinetic energy and
acts internally, while in the rotating frame, inertia manifests
itself as external forces as well as the internal force
associated with kinetic energy.

When trying to understand the forces that arise in non-inertial reference

frames, it can be helpful to mentally switch back to an inertial frame for

comparison. As an illustrative example, imagine watching a pottery wheel spin.

Say the surface is covered with frictionless ice and a hockey puck is placed on the

wheel. The puck will experience no side force and because of its inertia, it will

not move from the position from which it was released. From the reference of the
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icy platter, however, the puck is traveling in a perfect circle in the direction

opposite to the platter's spin. Its velocity relative to the platter is exactly r. )0, its

distance from the center multiplied by the angular velocity of the platter. The

puck, therefore, has kinetic energy where it had none in the non-accelerated

reference. There is no mystery to the force that is attracting the puck so that it

maintains its circular path. As readily seen from anyone standing in the room, the

Coriolis force and centrifugal force are just manifestations inertia in the rotating

frame.

The Coriolis force only acts when there is motion relative to the rotating

reference frame. Equations 4.1 relate the x and y components of the Coriolis force

to their potential representations:

Feor =-- -2m/l, Ucor = -2=.Y,

(4.1)

F(,,,,, = 2mn.i, Ucor, = 2mny.,

where n is the mean ,notion and the dots denote time derivatives. When a body

has zero velocity in the rotating refcrence frame, i and .j vanish and the Coriolis

terms disappear.

Likewise, the kinetic term of lmv' disappears for the zero velocity case.2

So the only potentials that are to be considered for a body with zero velocity in

the rotating frame for the restricted problem are gravitational and centrifugal.

IIII IIIIII III I I-I
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4.2 The Centrifugal Potential

Similar to the gravitational example that was used in figure 3.1, the

centrifugal force can be expressed by its potential function as shown in figure 4.2.

Again, the force at any point on the surface is merely the gradient at that point. In

a rotating frame, the body experiences this force strictly as a result of its position.

x-y plane

Figure 4.2 Centrifugal force and the corresponding potential of a coordinate
system that is rotating about its origin. Force vectors have a one-
to-one correspondence to the negative gradient of the surface with
energy depicted on the z-axis. Again, half of the field has been cut
away for clarity.

Centrifugal force is expressed as:

-Ten VT"
P = ir-r, (4.2)

r
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where vT is the tangential velocity and r is the distance from the barycentric

origin. The direction of force is away from the origin, as expressed by the radial

P unit vector. Tangential velocity can be expressed in terms of the average

angular velocity, or mean motion, n.

VT =rn. (4.3)

Substituting into equation (4.2),

(rn)2~
Fc,,,,, = mn -rn) , (4.4)

r

and applying the potential relation of equation (3.1), the centrifugal potential is

found to be:
Uc i= -J mirr• d ci

U,11 11172 2r di

2

_ G(n +M- 1,1 3 r2, (4.5)
2 

(4

where Kepler's law:

n1 3 
T G(m, +in2), (4.6)

has been used in the last step of equation (4.5) to remove the mean motion term.

The term I in equation (4.6) is the length between the primary masses.

4.3 Superposition of Potentials

The total zero velocity potential surface for the restricted three-body

problem is obtained by superposition of the primary gravitational potentials with
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+

Figure 4.3 Superposition of primary gravity wells (mass parameter p=0.25)

the centrifugal potential from the rotating frame.

The gravitational potential of the two primaries is given by the

superpositioning:

Ugrav,~ srv.grav,+,,.

(4.7)
_ Gm 3 Ginin3



35

+ r

Figure 4.4 Superposition of gravitational potential with centrifugal potential
to attain the zero velocity potential surface.

The gravitational potential of the primaries may be superpositioned in the

same manner as the static analysis of the Earth-Moon system from chapter 3.

While the Earth-Moon system has a mass parameter of p _ 0.01214 and the Sun-

Jupiter system has a mass parameter of p--- 0.(XX09538, the example in figure 4.3
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depicts the case of l=0 25. The mass parameter is given in equation (4.10) as the

ratio of the smaller mass, m2 , to the total mass. The topology for the surface is

essentially the same in all cases except for the limiting case where /= 0 which

results in the two-body problem in a rotating frame. The topology will be studied

in more detail in chapter 5.

The centrifugal potential is then superpositioned so that equations (4.5)

and (4.7) are combined:

.1 G(ný + inm2)m 3 r2  Ginm11i3  Gm2 min" (4.8)
2 13

representing the total potential,

U,o, = Ugrav + Ucent, (4.9)

where only gravitational and centrifugal terms affect the potential. The Coriolis

and kinetic energy terms do not appear because there is zero velocity relative to

the rotating reference frame. So the resulting surface in figure 4.4 is the zero

velocity potential surface.

It is then possible to use the basic relationships to put equation (4.8) into

non-dimensional form so that the potential function is expressed only in terms of

the mass parameter /.

in = (4.10)
+in-,+

m1+ n

l-p= m (4.11)
in, + in2
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The length I is normalized so that the position coordinate- of mass rn1 are

(p,O) and m, are (1-p,0):

1=/+(1-P) = 1. (4.12)

The radius r is the Euclidean norm from the origin to in, so that:

r2 x 2 +y2 . (4.13)

The distance r, is the distance from mass mn, to the third mass:

r1
2 = (x _ y) 2 + V2. (4.14)

Likewise, the distance r2 is measured from in, to 1173:

r2 = (x + 1 _-4)2 + 2. (4.15)

Finally, substituting equations (4.10) to (4.16) into equation (4.8), and

dividing by the quantity G(mi + "k )in3, the result becomes:

G /in. +( 2 +.72) (1- (4.16)G(mj n n.=2' r, r,"

where the right side is recognizable as -17 from chapter 2.

The zero velocity curves, which were introduced in chapter 2, are seen to

be obtained from energy-specific cross sections of the potential function as

determined by the Jacobian constant. Zero velocity curves are the subject of the

next chapter.



Chapter 5

The Equilibrium Points and Zero Velocity Curves

It was shown in chapter 4 that the potential function is the superposition of

the gravitational potential of the two primaries and the centrifugal potential of the

rotating reference frame. The equilibrium points and curves of zero velocity are

shown to be inseparably related to the potential function.

m2

Figure 5.1 Equilibrium points occur where the potential surface has a zero
gradient. The plane of motion is found at the energy level
determined by the Jacobian constant.

38
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5.1 The Equilibrium Points

There are five points on the potential surface where the gradient is zero. A

body located at any of these points will experience zero net force in the rotating

frame. They are therefore called equilibrium points and signify a balance between

the centrifugal repulsion and gravitational attractions. Sometimes referred to as

stationary points or libration points, Lagrange is credited with their discovery in

1772, and in his honor they are popularly called the Lagrange points. His

research lead to the discovery of the Trojan asteroids 134 years later [16].

L4 Y

//

m21/ x

LI n 2 L3

\ /

X

L5

Figure 5.2 The location of the collinear and equilateral Lagrange points in
relation to the orbit of the smaller primary mass.
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Figure 5.1 shows how the potential surface has a zero gradient at these

points. The three points located on the x-axis are known as the collinear

equilibrium points and are seen to be saddles. From left to right, these are labeled

Ll, L2 , and L 3 and their exact location depends on the mass ratio. The other two

points, labeled L4 and L5, are found at the top of a potential peak that forms an

equilateral triangle with the primaries. The equilateral geometry holds for all

values of the mass parameter.

5.2 Zero Velocity Curves

Figure 5.1 also shows the relation of the potential surface to the two

spatial dimensions where motion is taking place. The Jacobian constant

establishes the height on the z-axis for the plane of motion. The third body may

have motion in this plane without penetrating the potential surface.

The height above the potential surface represents energy due to velocity

relative to the rotating reference frame. As the third body gets closer to the

potential surface, its energy due to velocity decreases. It the body were to come

in contact with the surface, it must do so with zero velocity. To get below the

potential surface would require negative energy due to velocity. Velocity squared

equaling a negative number would correspond to imaginary velocity, therefore it

is impossible to penetrate the potential surface.

Zero velocity curves are found by taking a slice through the potential

surface at the energy level specified by the Jacobian constant. These curves

define regions where motion is possible and where motion is prohibited. If the
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region is above the potential surface, then motion is possible. If the region is

below the potential surface, motion is prohibited. If the body is found to be

contained within a closed contour, it is trapped by the potential surface from all

other regions in the plane even though other areas were not strictly energy

prohibited. It is impossible to tunnel through the potential surface to get from one

permissible region to another.

Figures 5.3 through 5.10 depict a series of zero velocity curves increasing

from a low to high energy state. The curves are formed in the x-y plane at the top

level of the graph. Although the case /=..3 is used, the topology is the same for

all values of the mass parameter. Note that the Jacobian constant varies inversely

with energy.

Figure 5.3 shows that a body of low energy is captured in the gravity well

of one of the primary masses, or if found outside the system, it is prohibited from

entering by the centrifugal force of the rotating frame. It is difficult to imagine

why a body should be repelled from the primaries. If a body is just sitting out in

inertial space with no velocity, it is sure to be attracted into a system of primaries.

But such a body, as viewed from the rotating frame, has a great velocity due to its

perceived rotation in the direction opposite of the binaries. Its energy in the

rotating reference is very high and it is therefore not restricted by the potential

surface from entering the primary system. On the other hand, if in the rotating

reference a body has low energy due to velocity, it must be moving along with the

reference frame so that its own inertia prevents it from entering the primary

system.
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Figure 5.3 Topology for the Figure 5.4 Energy level for the
lowest level has three isolated regions. L, equilibrium point.

Figure 5.5 Trajectory between Figure 5.6 Energy level for the
the primary masses is not prohibited. L, equilibrium point.
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Figure 5.7 Prohibited region is Figure 5.8 Energy level for the
in the shape of a horseshoe. L3 equilibrium point.

Figure 5.9 Kidney shaped Figure 5.l1) Energy level close to
prohibited regions. L4 equilibrium point.
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The Lagrange points are seen to be located at the energy levels where the

topology of the zero velocity curves change. The lowest energy equilibrium point

is seen in figure 5.4 to occur at a transition from three regions of possible motion

to two. After increasing energy through the L, Lagrange point, the two regions

become one. The prohibited region shrinks from a hors,-'hoe shape in figure 5.7,

through the L3 point in figure 5.8, to two smaller kidney shaped regions in figure

5.9. The peak of the potential surface is almost reached in figure 5. 10. These

small ovals are the shape of zero velocity curves near the equilateral Lagrange

points. Self-intersecting zero velocity curves are known as transitional, while

those that do not pass through equilibrium points are known as ty.pical [5]. This

series of figures should be compared to figure 2.4.

Figure 5.11 Zero velocity curve near the equilateral Lagrange point for p=0.5.
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5.3 Extreme Values of the Mass Parameter

The topology of the potential surface is the same, in general, for all values

of the mass parameter. The degenerate case of M=0.0 and maximum of p=0.5 are

included for completeness. With the mass parameter being defined as the ratio of

the smaller mass to the total mass, the largest value it can take is one-half. A

symmetry about the x and y axes for the M=0.5 case in figure 5.11 has given it

special attention as the Copenhagen problem [ 15].

The limiting case of ui=0 is just the two-body problem. Zero velocity

curves are seen to take on the shape of concentric circles. The topology is

qualitatively different, as evidenced by the equilibrium points becoming a

complete circle.

Figure 5.12 Zero velocity curve for u=O, the two-body problem.
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The circular set of equilibrium points showI in figure 5.12 helps to explain

the formation of rings around planets. Each point on this ring is known to be

stable because it corresponds to a circular orbit.

For the regular three-body potential surfaces, the collinear points are

highly unstable. It would seem more difficult for a body to remain on top of a

peak than in a saddle, but the equilateral points are stable if P<0.0385 [15].

Although it is not usual for a peak in potential to be stable, the Coriolis force acts

against deviations to maintain position at the peak.

5.6 Applications for the Earth-Moon System

Figure 5.13 The cis-lunar Lagrange point (p=0.0) 121).
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The most practical application of the restricted three-body problem from

an engineering standpoint belongs to the Earth-Moon system. Launching a rocket

into orbit may be thought of, in terms of energy, as climbing up Earth's gravity

well. When going to the Moon, it is very inefficient to land any mass that is only

needed for the return trip. Were it not for the Lunar Orbit Rendezvous (LOR)

profile, the Apollo program would have required a rocket much larger than the

Saturn V which, like the Russian's effort, might never have gotten off the ground.

It is interesting to note how the figure-8 trajectories used in the Apollo missions

relate to the zero velocity curve that appears in figure 5.14

Figure 5.14 The trans-lunar Lagrange point (p=O.012 1).
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Despite its energy efficiency, the LOR profile is restrictive because of the

constraints imposed by the rendezvous. Landing sites need to be located near the

lunar equator. If not, a lunar launch window has to be met in order to prevent a

costly plane change maneuver. A base located at mid-latitude would have a

launch window open every 14 days as the Moon rotates 180° underneath the

rendezvous orbit. This restriction is referred to as the mid-latitude accessibility

constraint [6].

The collinear Lagrange points L, and L2 are being considered as the

location for a future space station. Operations to any point on the lunar surface

could be accomplished without the launch window restrictions that LOR faces.

Although the points are not naturally stable, orbits in the vicinity of the

equilibrium points can be maintained with an acceptable expenditure of station-

keeping thrust.

The trans-lunar point is beyond the Moon by several lunar diameters. An

orbit around this point looks like a halo because the spacecraft appears at the edge

of the Moon's outline when viewed from the Earth. Such a halo orbit would be

ideal for a communication link with any lunar operation conducted on the far side

of the Moon. The cis-lunar point, located between the Moon and Earth, is the

most accessible from low Earth orbit because of its low energy potential. It is

also the closest equilibrium point to the Earth. With the possibility of mining the

Moon for rocket fuel, the cis-lunar point would be a very efficient staging base for

sustained missions to Mars. Exploitation of the Lagrange points will make future

space operations more efficient.



Chapter 6

Summary

The superposition analysis in a three-dimensional representation clearly

reveals the component forces of the restricted problem. For the case where the

third body has zero relative velocity, the only forces that influence the potential

are due to the gravitational attraction of the primary masses and the centrifugal

effect of the rotating reference frame. These define a potential surface and any

velocity that the third body possesses manifests itself as energy above the surface.

Zero velocity curves as well as the Lagrange points have been shown to be

contained within the potential surface through special relationships. The zero

velocity curves are intersections of the potential surface at the energy level

determined by the Jacobian constant of the third body. They define regions where

motion is possible and motion is prohibited. The Lagrange points are located at

the five points where the gradient of the surface goes to zero. This occurs at the

levels of energy where transitional zero velocity curves are found and the

topology changes. The collinear equilibrium points are located at saddles and,

although useful halo-type orbits can be maintained around them, they are unstable

points. The equilateral points are at the highest level of energy on the potential

surface. In the case where the mass ratio of the primaries is small, these points are

stable.

The restricted problem of three bodies forms a good approximation for

real-world situations. Lagrange's calculation of equilibrium points was thought to

49
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be a mathematical quirk of no real significance. The subsequent discovery of the

Trojan asteroids is an example where theory was ahead of experiment by over 100

years. Rendezvous and control of spacecraft in orbit about the collinear

equilibrium points is a current topic of research. It is the destiny of mankind to

return to the Moon, venture on to Mars and beyond. Exploitation of the Lagrange

points will make these endeavors more cost effective.
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